Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.038
Filtrar
1.
Ecotoxicol Environ Saf ; 271: 116001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277973

RESUMO

Dichlorodiphenyltrichloroethane (DDT) is a broad-spectrum insecticide, widely detected in environments due to its high stability characteristic and long natural half-life period. The adverse impact of DDT exposure on organisms and humans has attracted great concern worldwide. The current study explored the developmental and neurobehavioral toxicity response of DDT in embryonic zebrafish. The embryos were treated with DDT (0, 0.1, 1, 2.5 and 5 µM) during 6 h post fertilization (hpf) to 144 hpf. Our result indicated that DDT exposures increased the embryo hatching rate at 48 and 60 hpf, the larval malformation rate at 120 hpf and mortality rate at 144 hpf. The manifested malformations included uninflated swim bladder, bent spine and tail, deformed liver, and pericardial edema. The 120 hpf larval organs size of the gut and swim bladder was decreased in higher exposed concentration groups. Besides, DDT exposure resulted in hyperactivity for the embryo spontaneous movement at 24 hpf and tremor like movement measured by the free larval activity at 72 hpf, as well as the larval activity at 96 hpf under light-dark transition stimulus. Mechanistic examinations at 120 hpf revealed DDT exposure elevated oxidative stress through MDA formation increase, ATP level decrease as well as antioxidant enzyme genes (sod1 and gpx1a) expression decrease. DDT exposure induced abnormal neurotransmitters expression with DA level increase, 5-HT and NOS level decrease. DDT exposure suppressed the gene expressions involved in axon development (rab33a and nrxn2a) and potassium channel (kcnq2 and kcnq3). Our results suggest that the hyperactivity and tremor like movement in DDT-exposed embryos/larvae may result from oxidative stress involved with neuronal damage.


Assuntos
DDT , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , DDT/metabolismo , Embrião não Mamífero/metabolismo , Tremor/metabolismo , Relação Dose-Resposta a Droga , Larva/fisiologia , Desenvolvimento Embrionário
2.
Chemosphere ; 349: 140907, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092165

RESUMO

Increasing evidence shows that an adverse environment during the early fetal development can affect the epigenetic modifications on a wide range of diabetes-related genes, leading to an increased diabetic susceptibility in adulthood or even in subsequent generations. p,p'-Dichlorodiphenoxydichloroethylene (p,p'-DDE) is a break-down product of the pesticide dichlorodiphenyltrichloroethane (DDT). p,p'-DDE has been associated with various health concerns, such as diabetogenic effect. However, the precise molecular mechanism remains unclear. In this study, p,p'-DDE was given by gavage to pregnant rat dams from gestational day (GD) 8 to GD15 to generate male germline to investiagate the transgenerational effects. We found that early-life p,p'-DDE exposure increased the transgenerational diabetic susceptibility through male germline inheritance. In utero exposure to p,p'-DDE altered the sperm DNA methylome in F1 progeny, and a significant number of those differentially methylated genes could be inherited by F2 progeny. Furthermore, early-life p,p'-DDE exposure altered DNA methylation in glucose metabolic genes Gck and G6pc in sperm and the methylation modification were also found in liver of the next generation. Our study demonstrate that DNA methylation plays a critical role in mediating transgenerational diabetogenic effect induced by early-life p,p'-DDE exposure.


Assuntos
Metilação de DNA , Diabetes Mellitus , Gravidez , Feminino , Masculino , Ratos , Animais , Diclorodifenil Dicloroetileno/metabolismo , Sêmen , DDT/metabolismo
3.
Biosci Biotechnol Biochem ; 88(1): 123-130, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37796901

RESUMO

1,1,1-Trichloro-2,2-bis(4-chlorophenyl)-ethane (DDT) is the first synthetic insecticide and one of the most widely used pesticides. The use of DDT has been banned, but it remains one of the most notorious environmental pollutants around the world. In this study, we found that γ-hexachlorocyclohexane (γ-HCH) dehydrochlorinase LinA from a γ-HCH-degrading bacterium, Sphingobium japonicum UT26, converts DDT to 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethylene (DDE). Because of the weak DDT degradation activity of LinA, we could not detect such activity in UT26 cells expressing LinA constitutively. However, the linA-deletion mutant of UT26 harboring a plasmid for the expression of LinA, in which LinA was expressed at a higher level than UT26, showed the DDT degradation activity. This outcome highlights the potential for constructing DDT-degrading sphingomonad cells through elevated LinA expression.


Assuntos
Hexaclorocicloexano , Inseticidas , Hexaclorocicloexano/metabolismo , DDT/metabolismo , Bactérias/metabolismo
4.
Environ Pollut ; 333: 122063, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330184

RESUMO

Dichlorodiphenyltrichloroethane (DDT), a persistent organic pollutant, has known effects on natural microbes. However, its effects on soil ammonia-oxidizing microbes, significant contributors to soil ammoxidation, remain unexplored. To address this, we conducted a 30-day microcosm experiment to systematically study the effects of DDT contamination on soil ammonia oxidation and the communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our findings revealed that DDT inhibited soil ammonia oxidation in the early stage (0-6 days), but it gradually recovered after 16 days. The copy numbers of amoA gene of AOA decreased in all DDT-treated groups from 2 to 10 days, while that of AOB decreased from 2 to 6 days but increased from 6 to 10 days. DDT influenced the diversity and community composition of AOA but had no significant effect on AOB. Further, the dominant AOA communities comprised uncultured_ammonia-oxidizing_crenarchaeote and Nitrososphaera sp. JG1: while the abundance of the latter significantly and negatively correlated with NH 4+-N (P ≤ 0.001), DDT (0.001 < P ≤ 0.01), and DDD (0.01 < P ≤ 0.05) and positively correlated with NO3--N (P ≤ 0.001), that of the former significantly and positively correlated with DDT (P ≤ 0.001), DDD (P ≤ 0.001), and NH 4+-N (0.01 < P ≤ 0.05) and negatively correlated with NO3--N (P ≤ 0.001). Among AOB, the dominant group was the unclassified Nitrosomonadales in Proteobacteria, which showed significant negative correlation with NH 4+-N (0.01 < P ≤ 0.05) and significant positive correlation with NO3--N (0.001 < P ≤ 0.01). Notably, among AOB, only Nitrosospira sp. III7 exhibited significant negative correlations with DDE (0.001 < P ≤ 0.01), DDT (0.01 < P ≤ 0.05), and DDD (0.01 < P ≤ 0.05). These results indicate that DDT and its metabolites affect soil AOA and AOB, consequently affecting soil ammonia oxidation.


Assuntos
Amônia , Archaea , Archaea/metabolismo , Amônia/metabolismo , Solo , DDT/metabolismo , Oxirredução , Bactérias/metabolismo , Microbiologia do Solo , Filogenia , Nitrificação
5.
Toxicology ; 493: 153554, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236336

RESUMO

DDT, a persistent organic pollutant, remains affecting human health worldwide. DDT and its most persistent metabolite (p,p'-DDE) negatively affect the immune response regulation and mechanisms involved in protecting against pathogens Such metabolite decreases the capability to limit intracellular growth of Mycobacterium microti and yeast. However, the effect on unstimulated (M0) and anti-inflammatory macrophages (M2) has been evaluated scanty. Herein, we evaluated the impact of p,p'-DDE at environmentally relevant concentrations (0.125, 1.25, 2.5, and 5 µg/mL) on bone marrow-derived macrophages stimulated with IFNγ+LPS to M1 or with IL-4 +IL-13 to M2. Thus we study whether the p,p'-DDE induces M0 to a specific phenotype or modulates activation of the macrophage phenotypes and explains, at least partly, the reported effects of p,p'-DDE on the M1 function. The p,p'-DDE did not affect the cell viability of M0 or the macrophage phenotypes. In M1, the p,p'-DDE decreased NO•- production and IL-1ß secretion, but increasing cellular ROS and mitochondrial O2•-, but did not alter iNOS, TNF-α, MHCII, and CD86 protein expression nor affect M2 markers arginase activity, TGF-ß1, and CD206; p,p'-DDE, did not affect marker expression in M0 or M2, supporting that its effects on M1 parameters are not dependent on M0 nor M2 modulation. The decreasing of NO•- production by the p,p'-DDE without altering iNOS levels, Arginase activity, or TNF-α, but increasing cellular ROS and mitochondrial O2 suggests that p,p'-DDE interferes with the iNOS function but not with its transcription. The p,p'-DDE decreasing of IL-1ß secretion, without any effect on TNF-α, suggest that an alteration of specific targets involved in IL-1ß secretion may be affected and related to ROS induction. The p,p'-DDE effect on iNOS function and the IL-1ß secretion process, as the NLRP3 activation, deserves further study.


Assuntos
Diclorodifenil Dicloroetileno , Macrófagos , Animais , Humanos , Camundongos , Arginase/genética , Arginase/metabolismo , Arginase/farmacologia , DDT/metabolismo , DDT/farmacologia , Diclorodifenil Dicloroetileno/toxicidade , Diclorodifenil Dicloroetileno/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética
6.
Plant Cell ; 35(8): 3109-3126, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37208763

RESUMO

DNA methylation is a conserved epigenetic modification that is typically associated with silencing of transposable elements and promoter methylated genes. However, some DNA-methylated loci are protected from silencing, allowing transcriptional flexibility in response to environmental and developmental cues. Through a genetic screen in Arabidopsis (Arabidopsis thaliana), we uncovered an antagonistic relationship between the MICRORCHIDIA (MORC) protein and the IMITATION SWITCH (ISWI) complex in regulating the DNA-methylated SUPPRESSOR OF DRM1 DRM2 CMT3 (SDC) reporter. We demonstrate that components of the plant-specific ISWI complex, including CHROMATIN REMODELING PROTEIN11 (CHR11), CHR17, DDT-RELATED PROTEIN4 (DDR4), and DDR5, function to partially derepress silenced genes and transposable elements (TEs), through their function in regulating nucleosome distribution. This action also requires the known transcriptional activator DNAJ proteins, providing a mechanistic link between nucleosome remodeling and transcriptional activation. Genome-wide studies revealed that DDR4 causes changes in nucleosome distribution at numerous loci, a subset of which is associated with changes in DNA methylation and/or transcription. Our work reveals a mechanism for balancing transcriptional flexibility and faithful silencing of DNA-methylated loci. As both ISWI and MORC family genes are widely distributed across plant and animal species, our findings may represent a conserved eukaryotic mechanism for fine-tuning gene expression under epigenetic regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DDT/metabolismo , Epigênese Genética , Elementos de DNA Transponíveis , Comportamento Imitativo , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética
7.
Environ Pollut ; 329: 121661, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37085102

RESUMO

Antarctica is no longer pristine due to the confirmed presence of anthropogenic contaminants like Persistent Organic Pollutants (POPs). Benthic organisms are poorly represented in contamination studies in Antarctica although they are known to bioaccumulate contaminants. Sponges (Phylum Porifera) are dominant members in Antarctic benthos, both in terms of abundance and biomass, and are an important feeding source for other organisms, playing key functional roles in benthic communities. To the best of our knowledge, legacy chlorinated POPs such as polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and dichlorodiphenyltrichloroethane (DDT) and their metabolites have never been investigated in this Phylum in Antarctica. The aim of this work was to evaluate the bioaccumulation of PCBs, HCB, o,p'- and p,p'-DDT and their DDE and DDD isomers in 35 sponge samples, belonging to 17 different species, collected along the coast of Terra Nova Bay (Adèlie Cove and Tethys Bay, Ross Sea), and at Whalers Bay (Deception Island, South Shetland Islands) in Antarctica. Lipid content showed a significant correlation with the three pollutant classes. The overall observed pattern in the three study sites was ΣPCBs>ΣDDTs>HCB and it was found in almost every species. The ΣPCBs, ΣDDTs, and HCB ranged from 54.2 to 133.7 ng/g lipid weight (lw), from 17.5 to 38.6 ng/g lw and from 4.8 to 8.5 ng/g lw, respectively. Sponges showed contamination levels comparable to other Antarctic benthic organisms from previous studies. The comparison among sponges of the same species from different sites showed diverse patterns for PCBs only in one out of four cases. The concentration of POPs did not vary significantly among the three sites. The predominance of lower chlorinated organochlorines in the samples suggested that long-range atmospheric transportation (LRAT) could be the major driver of contamination as molecules with a high long range transport potential (e.g. low chlorinated PCBs, HCB) prevails on heavier ones.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Bifenilos Policlorados , Poluentes Ambientais/análise , Bifenilos Policlorados/análise , DDT/metabolismo , Regiões Antárticas , Bioacumulação , Hexaclorobenzeno , Hidrocarbonetos Clorados/análise , Lipídeos , Monitoramento Ambiental
8.
Sci Total Environ ; 876: 162734, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36907399

RESUMO

DDT and its transformation products (DDTs) are frequently detected in environmental and biological media. Research suggests that DDT and its primary metabolites (DDD and DDE) could induce estrogenic effects by disturbing estrogen receptor (ER) pathways. However, the estrogenic effects of DDT high-order transformation products, and the exact mechanisms underlying the differences of responses in DDT and its metabolites (or transformation products) still remain unknown. Here, besides DDT, DDD and DDE, we selected two DDT high-order transformation products, 2,2-bis(4-chlorophenyl) ethanol (p,p'-DDOH) and 4,4'-dichlorobenzophenone (p,p'-DCBP). We aim to explore and reveal the relation between DDTs activity and their estrogenic effects by receptor binding, transcriptional activity, and ER-mediated pathways. Fluorescence assays showed that the tested 8 DDTs bound to the two isoforms (ERα and ERß) of ER directly. Among them, p,p'-DDOH exhibited the highest binding affinity, with IC50 values of 0.43 µM and 0.97 µM to ERα and ERß, respectively. Eight DDTs showed different agonistic activity toward ER pathways, with p,p'-DDOH exhibiting the strongest potency. In silico studies revealed that the eight DDTs bound to either ERα or ERß in a similar manner to 17ß-estradiol, in which specific polar and non-polar interactions and water-mediated hydrogen bonds were involved. Furthermore, we found that 8 DDTs (0.0008-5 µM) showed distinct pro-proliferative effects on MCF-7 cells in an ER-dependent manner. Overall, our results revealed not only for the first time the estrogenic effects of two DDT high-order transformation products by acting on ER-mediated pathways, but also the molecular basis for differential activity of 8 DDTs.


Assuntos
DDT , Estrogênios , DDT/toxicidade , DDT/metabolismo , Receptor beta de Estrogênio , Receptor alfa de Estrogênio , Etanol , Receptores de Estrogênio
9.
Environ Pollut ; 324: 121366, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858099

RESUMO

There is increasing concern about the effects of endocrine disrupting chemicals (EDCs) on human health. Recently, some EDCs are suggested to affect energy metabolism leading to increased risk of obesity. Obesogenic effects of some EDCs on adipogenesis have been reported, however, there is no study examining their potential actions on the brain circuits controlling feeding and metabolism. We have investigated effects of tributyltin (TBT) and dichlorodiphenyltrichloroethane (p,p'-DDT) on electrical activity on dorsomedial hypothalamic leptin receptor neurons (DMHLepR), morphological adaptations in neuronal anatomy of DMHLepR, locomotion, and anxiety-like behaviors in mice. Twenty-three Lep-Cre transgenic mice were intracranially injected with GFP virus. Control animals received intraperitoneal corn oil alone while group 2 and 3 received TBT (25 µg/kg) and p,p'-DDT (2 mg/kg) for one month. Locomotor activity and anxiety-like behavior of the animals were determined by open field test. Electrophysiological effects of TBT and p,p'-DDT on DMHLepR neurons were determined by patch clamp method. Neuronal anatomy was determined by confocal microscopy. Spontaneous firing frequency of DMHLepR neurons of TBT group of mice was significantly higher than both p,p'-DDT and control groups (p < 0.01). TBT and p,p'-DDT significantly decreased frequency of the spontaneous inhibitory post-synaptic currents to DMHLepR neurons compared to the control group (p < 0.05). The time spent in the center and the number of entrances to the center by the TBT-administered mice were significantly lower than other groups (p < 0.01). The total distance traveled and mean speed of the control group of mice were significantly higher than the p,p'-DDT- and TBT-administered animals (p < 0.0001). c-Fos activity of the p,p'-DDT- and TBT-administered animals were significantly elevated compared to the control group (p < 0.001), while no change in the number of dendritic spines were observed. In conclusion, this study demonstrates that exposure to TBT and p,p'-DDT alters electrical activity in DMHLepR neurons and behavioral state in mice.


Assuntos
Disruptores Endócrinos , Camundongos , Animais , Masculino , Humanos , Disruptores Endócrinos/metabolismo , Receptores para Leptina/metabolismo , DDT/metabolismo , Hipotálamo , Neurônios , Ansiedade/induzido quimicamente
10.
Birth Defects Res ; 115(4): 458-473, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470842

RESUMO

OBJECTIVES: Tris(4-chlorophenyl) methane (TCPM) and tris(4-chlorophenyl)methanol (TCPMOH) are anthropogenic environmental contaminants believed to be manufacturing byproducts of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) due to environmental co-occurrence. TCPM and TCPMOH are persistent, bioaccumulate in the environment, and are detected in human breast milk and adipose tissues. DDT exposures have been previously shown to disrupt insulin signaling and glucoregulation, increasing risk for diabetes. We have previously shown that embryonic exposures organochlorines such as polychlorinated biphenyls disrupted pancreatic development and early embryonic glucoregulatory networks. Here, we determined the impacts of the similar compounds TCPM and TCPMOH on zebrafish pancreatic growth and gene expression following developmental exposures. METHODS: Zebrafish embryos were exposed to 50 nM TCPM or TCPMOH beginning at 24 hr postfertilization (hpf) and exposures were refreshed daily. At 96 hpf, pancreatic growth and islet area were directly visualized in Tg(ptf1a::GFP) and Tg(insulin::GFP) embryos, respectively, using microscopy. Gene expression was assessed at 100 hpf with RNA sequencing. RESULTS: Islet and total pancreas area were reduced by 20.8% and 13% in embryos exposed to 50 nM TCPMOH compared to controls. TCPM did not induce significant morphological changes to the developing pancreas, indicating TCPMOH, but not TCPM, impairs pancreatic development despite similarity in molecular responses. Transcriptomic responses to TCPM and TCPMOH were correlated (R2  = .903), and pathway analysis found downregulation of processes including retinol metabolism, circadian rhythm, and steroid biosynthesis. CONCLUSION: Overall, our data suggest that TCPM and TCPMOH may be hazardous to embryonic growth and development.


Assuntos
DDT , Peixe-Zebra , Feminino , Animais , Humanos , DDT/metabolismo , Metanol , Metano , Organogênese/genética , Pâncreas , Insulina , Expressão Gênica
11.
Sci Rep ; 12(1): 17872, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284104

RESUMO

The glutathione S-transferases (GST) genes are a multigene family of enzymes involved in the metabolism of endogenous and xenobiotic compounds by catalysing the conjugation of the reduced form of glutathione to the substrate. The epsilon class of GST (GSTe), unique to arthropods, is known to be involved in the detoxification process of several classes of insecticides, and GSTe2 in particular is known to have DDT dehydrochlorinase activity. This communication reports a tandem duplication of a genomic region encoding GSTe2 and GSTe4 genes in a laboratory-colonized DDT-resistant Anopheles stephensi. We identified duplication breakpoints and the organization of gene duplication through Sanger sequencing performed on long-PCR products. Manual annotation of sequences revealed a tandemly-arrayed duplication of a 3.62 kb segment of GST epsilon gene clusters comprised of five genes: a partial GSTe1, GSTe2, GSTe2-pseudogene, GSTe4 and partial GSTe5, interconnected by a conserved 2.42 kb DNA insert segment major part of which is homologous to a genomic region located on a different chromosome. The tandemly duplicated array contained a total of two GSTe2 and three GSTe4 functional paralog genes. Read-depth coverage and split-read analysis of Illumina-based whole-genome sequence reads confirmed the presence of duplication in the corresponding region of the genome. The increased gene dose in mosquitoes as a result of the GSTe gene-duplication may be an adaptive process to increase levels of detoxifying enzymes to counter insecticide pressure.


Assuntos
Anopheles , Inseticidas , Animais , Anopheles/metabolismo , DDT/farmacologia , DDT/metabolismo , Inseticidas/metabolismo , Resistência a Inseticidas/genética , Xenobióticos , Glutationa Transferase/metabolismo , Genômica , Glutationa
12.
Gen Comp Endocrinol ; 327: 114098, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878704

RESUMO

Obesity has become a very important public health problem and is increasing globally. Genetics, individual and environmental factors play roles in the etiology of this complex disorder. Recently, several environmental pollutants have been suggested to have obesogenic activities. Peroxisome proliferator activating receptor gamma (PPARγ), uncoupling protein-1 (UCP1) and their expression in white adipose tissue (WAT) and brown adipose tissue (BAT) play key roles in adipogenesis. UCP3 and irisin were reported to play roles in non-shivering thermogenesis. Our primary aim was to investigate obesogenic effects of hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) in rats. In addition, thermoregulatory effects of HCB, DDT and DDE were also investigated by analyzing the levels of Ucp3 and irisin. Thirty-two adult male Sprague-Dawley rats were randomly divided into four groups as control, HCB, DDT and DDE. Animals were administered with organochlorine pesticides (OCPs; 5 mg/kg bw) by oral gavage every other day for five weeks. At the end of the experimental period, the animals were sacrificed, BAT and WAT samples were collected to analyze Pparγ, Ucp1 and Ucp3 levels. Moreover, skeletal muscle samples were collected to examine Ucp3 and irisin levels. Serum glucose, cholesterol and triglyceride levels were also determined. Body weight and core temperature of the animals were not significantly affected by any of the OCP administration. Serum glucose, cholesterol and triglyceride levels were similar among the experimental groups. Pparγ expression was significantly elevated by HCB administration only in WAT (p < 0.05). On the other hand, both Pparγ and Ucp1 expressions were diminished in WAT and BAT (p < 0.01) by DDT treatment, while in WAT, DDE significantly decreased Pparγ expression without altering its expression in BAT (p < 0.001). Ucp3 and irisin levels in skeletal muscle were not altered. Our findings show that both DDT and DDE reduce the browning of WAT by suppressing white adipocytes and thus may have obesogenic activity in male rats without altering thermoregulation. In addition, HCB, DDT and DDE-induced alterations in expression of Pparγ and Ucp1 in WAT implicates differential regulation of adipogenic processes.


Assuntos
DDT , Diclorodifenil Dicloroetileno , Hexaclorobenzeno , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco , Animais , Peso Corporal , DDT/metabolismo , DDT/toxicidade , Diclorodifenil Dicloroetileno/metabolismo , Diclorodifenil Dicloroetileno/toxicidade , Fibronectinas/genética , Glucose/metabolismo , Hexaclorobenzeno/metabolismo , Hexaclorobenzeno/toxicidade , Masculino , Obesidade/induzido quimicamente , PPAR gama/genética , PPAR gama/metabolismo , Ratos , Ratos Sprague-Dawley , Triglicerídeos/metabolismo
13.
Pestic Biochem Physiol ; 183: 105084, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430074

RESUMO

The insect-specific epsilon class of glutathione S-transferases (GSTEs) plays important roles in insecticide detoxification in insects. In our previous work, five GSTEs were identified in Locusta migratoria, and two recombinant GSTEs, rLmGSTE1 and rLmGSTE4, showed high catalytic activity when 1-chloro-2,4-dinitrobenzene (CDNB) was used as a substrate. In this work, we further investigated whether these two GSTEs could metabolize three insecticides including malathion, deltamethrin and DDT. Using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC/MS) method, we found that rLmGSTE4, but not rLmGSTE1, can metabolize malathion and DDT. Malathion bioassays of L.migratoria after the expression of LmGSTE4 was suppressed by RNA interference (RNAi) showed increased insect mortality from 33.8% to 68.9%. However, no changes in mortality were observed in deltamethrin- or DDT-treated L.migratoria after the expression of LmGSTE4 was suppressed by RNAi. Our results provided direct evidences that LmGSTE4 participates in malathion detoxification in L.migratoria. These findings are important for understanding the mechanisms of insecticide resistance in L.migratoria and developing new strategies for managing the insect populations in the field.


Assuntos
Inseticidas , Locusta migratoria , Animais , DDT/metabolismo , DDT/farmacologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Inativação Metabólica/genética , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Locusta migratoria/genética , Locusta migratoria/metabolismo , Malation/metabolismo , Malation/farmacologia
14.
Environ Sci Technol ; 56(8): 5102-5110, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35384671

RESUMO

The impact of dietary lipid type on DDTr (DDT and its metabolites) relative bioavailability (RBA) in soil was investigated using an in vivo mouse model and in vitro assays. Three different lipids were long chain triglycerides (LCT), medium chain triglycerides (MCT), and short chain triglycerides (SCT). DDTr-RBA markedly (p < 0.05) increased from 51.3 ± 10.8% (control) to 94.6 ± 15.9% (10% w/w LCT) and 112 ± 20.8% (20% LCT) in LCT amended treatments. A significant increase in DDTr-RBA (92.2 ± 9.84%, p < 0.05) was also observed when mice were administered diets containing 20% MCT; however, no influence on DDTr-RBA was observed for SCT amended diets. Mechanism exploration showed that LCT and MCT enhanced DDTr solubilization by a factor of 7.31-9.59 compared to controls as a consequence of micelle formation which promoted DDTr mobilization from soil. LCT significantly enhanced DDTr intestinal absorption via increasing synthesis and secretion of apolipoprotein B 48 (32.2 ± 2.08 mg/L), compared to MCT (22.1 ± 1.32 mg/L) and SCT (15.5 ± 2.03 mg/L) treated Caco-2 cells. Mouse gut microflora analysis highlighted that LCT and MCT may increase intestinal permeability by regulating abundance of Lactobacillus, which may influence the absorption of DDTr.


Assuntos
DDT , Solo , Animais , Disponibilidade Biológica , Células CACO-2 , DDT/metabolismo , Humanos , Camundongos , Triglicerídeos
15.
Bull Environ Contam Toxicol ; 108(4): 672-677, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35039886

RESUMO

Bioaccessibility of hydrophobic organic contaminants (HOCs) from unintentional ingestion of soil is increasingly assessed with in vitro gastrointestinal models incorporating a sorption sink. In this study, the bioaccessibility of DDTs in contaminated soils (n = 11) was determined using "unfed" unified bioaccessibility method (UBM) and fed organic estimation human simulation test (FOREhST) with/without Tenax as an absorbent. By adding Tenax, the bioaccessibility of DDTs determined using UBM was significantly increased from 4.9-30.6% to 31.6-86.0%. In contrast, the bioaccessibility of DDTs determined using FOREhST without/with Tenax were similar with values of 20.0-60.9% vs 31.5-47.6%, implying that the influence of food components on the absorption efficiency of the sink should not be overlooked. Much high fraction of DDTs (bioaccessibility: 11.7-24.8%) remained in FOREhST supernatant after Tenax collection, suggesting that prediction of bioavailability through bioaccessibility obtained by absorbent needs to be treated with caution when bioaccessibility is determined using a "fed state" in vitro method.


Assuntos
Poluentes do Solo , Disponibilidade Biológica , DDT/metabolismo , Monitoramento Ambiental/métodos , Humanos , Solo/química , Poluentes do Solo/análise
16.
J Med Entomol ; 58(6): 2349-2357, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34260736

RESUMO

Phlebotomus argentipes is an established vector for Visceral leishmaniasis prevalent in the Indian subcontinent. Insect Glutathione S-transferases (GST) enzyme plays a pivotal role in the metabolism of xenobiotics and chemical insecticides. We report herein the identification and characterization of a delta class GST from the sandfly, P. argentipes. The resulting clone (rParg-GSTδ) is successfully sequenced, which revealed 76.43% and 66.32% gene identity with GST from Phlebotomus papatasi (Scopoli; Diptera: Psychodidae) and Lutzomiya longipalpis (Lutz and Neiva; Diptera: Psychodidae), respectively. The identified rParg-GST amino acid Blast results revealed 82.6% homology to delta class GST of Phlebotomus papatasi and more than 50% homology to Lepidoptera which comprises butterflies and moths. The Phylogenetic analysis of Parg-GST with different classes of Insect GSTs further supported its classification as delta class. A functional recombinant Parg-GSTδ protein (rParg-GSTδ) was expressed in Escherichia coli (Migula; Enterobacterales: Enterobacteriaceae) cells in a soluble form, purified to homogeneity and found to be active against a substrate 1-chloro-2,4-dintrobenzene (CDNB) and lipid peroxidation by-product 4-Hydrxynonenal (4-HNE). Interestingly, rParg-GSTδ demonstrates high dehydrochlorination activity against dichlorodiphenyltrichloroethane (DDT) i.e., 16.27 nM/µg in high performance liquid chromatography (HPLC) assay. These results provide evidence of direct DDT metabolism property exhibited by P. argentipes GST and set the foundation to decipher the metabolic resistance mechanism in P. argentipes against insecticides.


Assuntos
DDT/metabolismo , Glutationa Transferase/genética , Proteínas de Insetos/genética , Inseticidas/metabolismo , Phlebotomus/enzimologia , Animais , Feminino , Índia , Proteínas de Insetos/metabolismo , Phlebotomus/efeitos dos fármacos , Phlebotomus/genética
17.
Neurotoxicol Teratol ; 87: 106985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901621

RESUMO

A sequence of different classes of synthetic insecticides have been used over the past 70 years. Over this period, the widely-used organochlorines were eventually replaced by organophosphates, with dichlorodiphenyltrichloroethane (DDT) and chlorpyrifos (CPF) as the principal prototypes. Considerable research has characterized the risks of DDT and CPF individually, but little is known about the toxicology of transitioning from one class of insecticides to another, as has been commonplace for agricultural and pest control workers. This study used adult zebrafish to investigate neurobehavioral toxicity following 5-week chronic exposure to either DDT or CPF, to or their sequential exposure (DDT for 5 weeks followed by CPF for 5 weeks). At the end of the exposure period, a subset of fish were analyzed for brain cholinesterase activity. Behavioral effects were initially assessed one week following the end of the CPF exposure and again at 14 months of age using a behavioral test battery covering sensorimotor responses, anxiety-like functions, predator avoidance and social attraction. Adult insecticide exposures, individually or sequentially, were found to modulate multiple behavioral features, including startle responsivity, social approach, predator avoidance, locomotor activity and novel location recognition and avoidance. Locomotor activity and startle responsivity were each impacted to a greater degree by the sequential exposures than by individual compounds, with the latter being pronounced at the early (1-week post exposure) time point, but not 3-4 months later in aging. Social approach responses were similarly impaired by the sequential exposure as by CPF-alone at the aging time point. Fleeing responses in the predator test showed flee-enhancing effects of both compounds individually versus controls, and no additive impact of the two following sequential exposure. Each compound was also associated with changes in recognition or avoidance patterns in a novel place recognition task in late adulthood, but sequential exposures did not enhance these phenotypes. The potential for chemical x chemical interactions did not appear related to changes in CPF metabolism to the active oxon, as prior DDT exposure did not affect the cholinesterase inhibition resulting from CPF. This study shows that the effects of chronic adult insecticide exposures may be relevant to behavioral health initially and much later in life, and that the effects of sequential exposures may be unpredictable based on their constituent exposures.


Assuntos
Comportamento Animal/efeitos dos fármacos , Clorpirifos/toxicidade , DDT/toxicidade , Locomoção/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , DDT/metabolismo , Inseticidas/toxicidade , Peixe-Zebra/metabolismo
18.
Food Chem Toxicol ; 152: 112155, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33775782

RESUMO

Several studies have reported a correlation between pesticides exposure and metabolic disorders. Dichlorodiphenyltrichloroethane (DDT) and permethrin (PMT), two pesticides highly prevalent in the environment, have been associated to dysregulation of liver lipids and glucose metabolisms and non-alcoholic fatty liver disease (NAFLD). However, the effects of DDT/PMT mixtures and mechanisms mediating their action remain unclear. Here, we used multi-omic to investigate the liver damage induced by DDT, PMT and their mixture in rat liver organ-on-chip. Organ-on-chip allow the reproduction of in vivo-like micro-environment. Two concentrations, 15 and 150 µM, were used to expose the hepatocytes for 24 h under perfusion. The transcriptome and metabolome analysis suggested a dose-dependent effect for all conditions, with a profile close to control for pesticides low-doses. The comparison between control and high-doses detected 266/24, 256/24 and 1349/30 genes/metabolites differentially expressed for DDT150, PMT150 and Mix150 (DDT150/PMT150). Transcriptome modulation reflected liver inflammation, steatosis, necrosis, PPAR signaling and fatty acid metabolism. The metabolome analysis highlighted common signature of three treatments including lipid and carbohydrates production, and a decrease in amino acids and krebs cycle intermediates. Our study illustrates the potential of organ-on-chip coupled to multi-omics for toxicological studies and provides new tools for chemical risk assessment.


Assuntos
DDT/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/efeitos dos fármacos , Permetrina/metabolismo , Praguicidas/metabolismo , Animais , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fígado Gorduroso/induzido quimicamente , Hepatócitos/metabolismo , Dispositivos Lab-On-A-Chip , Fígado/citologia , Masculino , Metaboloma/efeitos dos fármacos , Metabolômica/instrumentação , Metabolômica/métodos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
19.
Folia Microbiol (Praha) ; 66(3): 355-369, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33517552

RESUMO

Longstanding industrial deposits of 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene (DDT) impose environmental threat in Salamanca city, located in central Mexico. Native bacteria from this location were isolated and identified, and their potential utility for DDT biodegradation was examined. Twenty-five isolates were obtained, and cell lysates were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) with BiotyperTR; twenty-one organisms were identified at species level, and the other four were assigned to genus. The most abundant species corresponded to Bacillus (44%) and Pseudomonas genera (20%). Eight bacteria could grow in the presence of 200 mg/L of DDT. Two-week exposure of Lysinibacillus fusiformis, Bacillus mycoides, Bacillus pumilus, and Bacillus cereus to DDT 50 mg/L and 200 mg/L, caused percentage pesticide degradation in the range 41-48% and 26-31%, respectively. Other four bacteria presented lower degradation rates. Gas chromatography-mass spectrometry (GC-MS) analysis of the spent media revealed that eight isolates assisted the conversion of DDT, DDD (1,1-dichloro-2,2-bis-(4-chlorophenyl)ethane), and DDE (1,1-dichloro-2,2-bis-(4-chlorophenyl)ethylene) to DDMU (1,1-(2-chloro-1,1-ethenediyl)-bis-(4-chlorobenzene)); however, DDNU (2,2-bis(4-chlorophenyl)ethylene), DBP (4,4'-dichlorobenzophenone(bis(4-chlorophenyl)methanone)) and DBH (bis(4-chlorophenyl)methanol) were found only for L. fusiformis, B. mycoides, B. cereus, B. marisflavi, and B. megaterium. Within the context of DDT biodegradation, the first three were the most promising isolates and further studies will be aimed at setting the experimental conditions for efficient mineralization of DDT congeners.


Assuntos
Bacillaceae , Bacillus , Bactérias , DDT , Microbiologia Ambiental , Espectrometria de Massas , Bacillaceae/isolamento & purificação , Bacillaceae/metabolismo , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bactérias/química , Bactérias/classificação , Biodegradação Ambiental , DDT/metabolismo , Poluentes Ambientais/metabolismo , México
20.
Eur J Pharm Biopharm ; 155: 112-121, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32798666

RESUMO

Cationic liposome - CpG DNA complexes (lipoplexes) are known as stimulators of innate immunity via Toll-like receptor 9 (TLR9)-triggered activation of the nuclear factor kappa B (NF-κB) pathway. More recent reports suggest that DNA lipoplexes also engage DNA sensors in the cytosol leading to the stimulation of the interferon response factor (IRF) pathway. In this study a range of lipoplexes were formulated by using an invariable helper lipid, three different cationic lipids (DOTAP, DOTMA and DDA) and three different CpG-containing plasmids of different sizes. These lipoplexes exhibited similar hydrodynamic diameters, zeta-potentials and plasmid loading rates, despite the different lipid blends and CpG-containing plasmids. Binding and uptake of liposomal lipids by J774.A1 macrophages and JAWSII dendritic cells increased significantly (up to 4-fold) upon lipoplex formation. Cellular plasmid DNA uptake via lipoplexes compared to naked DNA was increased up to 18-fold. Analysis of signal transduction pathway activation in J774-DUAL™ reporter cells by liposomes or naked CpG plasmid DNA compared to their derived lipoplexes showed only minor activation of the NF-κB pathway, while the IRF pathway displayed massive activation factors of up to 46-fold. DOTAP- and DOTMA lipoplexes also led to massive interferon-alpha and -beta secretion of J774A.1 macrophages and JAWSII dendritic cells, which is a hallmark of IRF pathway activation. Cellular distribution studies on DOTAP lipoplexes suggest delivery of plasmid DNA via vesicular compartments into the cytosol. Taken together, the CpG plasmid DNA lipoplexes generated in this study appear to selectively stimulate DNA receptors activating the IRF pathway, while bypassing TLR9 and NF-κB activation.


Assuntos
DDT/análogos & derivados , DNA/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Interferons/metabolismo , Plasmídeos/metabolismo , Compostos de Amônio Quaternário/metabolismo , Animais , Cátions , Linhagem Celular , DDT/administração & dosagem , DDT/metabolismo , DNA/administração & dosagem , Ácidos Graxos Monoinsaturados/administração & dosagem , Lipossomos , Camundongos , Plasmídeos/administração & dosagem , Compostos de Amônio Quaternário/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...